In a Nutshell: Parabola Forms
part of the In a Nutshell series on Adrian’s Study Club
  Factored form y=a(x-x_1)(x-x_2) 
 Given:
- 2 x-ints
 - One other point `P(x,y)
 
  Vertex Form y=a(x-h)^2 + k 
 Given:
- Vertex 
V(h,k) P(x, y)
  General Form y=ax^2 + bx + c 
 Given:
- 3 points
 
OR
- 2 points
 - y-int where 
y-int = c 
OR
- Axis of symmetry `x=-(b/2a)
 - 2 other points
 
| Form | General y = ax^-2 + bx + c |  Vertex y =a (x-h)^2 + k |  Intercept y=(x-x_1)(x-x_2) |  
|---|---|---|---|
| Axis of symmetry | x = -(b/2a) |  x = h |  x=((x_1 + x_2)/2) |  
| Vertex | Sub x = -(b/2a) into the equation to find y. |  (h, k) |  Sub x=((x_1 + x_2)/2) into the equation to find y. |  
| Form | Vertical Translation y = ax^2 + c |  Horizontal translation y=a(x-h)^2 |  
|---|---|---|
| Axis of symmetry | x=0 (y-axis) |  x=h |  
| Vertex | V(O,c) |  V(h,0) |  
